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ABSTRACT

Here we present a scalable method to compute the structure of causal
links over large scale dynamical systems that achieves high effi-
ciency in discovering actual functional connections. The method is
based on the Granger causality analysis of multivariate linear mod-
els, solved by means of a sparse regression approach, and can deal
with autoregressive models of more than 10,000 variables.

Index Terms— Magnetic Resonance Imaging, Image interpre-
tation, Functional Imaging

1. INTRODUCTION

Neuroscience, as most other fields in biology, and experimental
science in general, is experiencing a growth bottleneck: inordinate
amounts of data (high resolution imaging, multi-electrode record-
ings, gene expression arrays) meet conceptual frameworks and
mathematical models developed for a more scarce context, such
as single-unit electrophysiology. Indeed, successful mathematical
modeling in neuroscience has been dominated by either low dimen-
sional or linear or quasi-linear models. However, neuroanatomy and
neurophysiology indicate that brain function is an emergent property
of a highly interconnected and highly non-linear system. In particu-
lar, research has shown that the response of early sensory processing
cortical units can be non-linearly affected by intra-area connections,
as well as by global or non-localized brain states such as percep-
tual attention, task-oriented behavior, or otherwise non-specific
“house-keeping” or “ongoing” activity [1]. Moreover, performance
in relatively simple tasks such as face recognition involves the coor-
dination of vast neuronal networks, spanning almost the entire brain
[2].

Even more than modeling, analysis of neurophysiological data
has been largely constrained to linear, low-dimensional approaches
due to a number of reasons: (1) computational intractability of non-
linear approaches, such as Independent Component Analysis (a ref
here is in order), for high-dimensional data, (2) experimental infea-
sibility, in terms of limited statistical sampling for non-linear kernel
reconstruction, such as for the Volterra expansion method [6], (3)
limited spatial and/or temporal resolution of the data. In the case of
functional neuroimaging, the General Linear Model (GLM) method
has been applied with success to identify the activation of differ-
ent areas in response to stimulation, and in correlation with percep-
tual, motor and cognitive tasks, as well as various other brain condi-
tions such as emotional and attentional states (more refs here; maybe
just The Book). This model is not only obviously limited to linear
mappings between regressor and voxel activation, but it also glosses
over potentially discoverable relationships between different voxels
or groups of voxels, which may even be independent or not linearly

correlated with the condition at hand.
In order to overcome these limitations, several models have

been developed in recent years to overcome the co-dependence/non-
linearity limitations, including heuristics for binarization of full-
voxel network reconstruction [10, 4], and more principled ap-
proaches, based on statistical causality measures [7], but only
implementable on small number of voxels. Here we present a
scalable method to compute the structure of causal links over large
scale dynamical systems that achieves high efficiency in discovering
actual functional connections. The method is based on the Granger
causality analysis of multivariate linear models, solved by means of
a sparse regression approach.

2. GRANGER CAUSALITY

Granger causality is defined in terms of predictability of stochastic
processes. A processXi is said to have a causal influence on another
process Xj if predictability of Xi at a given time instant can be
improved using the past values of Xj .

Formally, let X represent a vector of N stationary stochastic
processes. Let X(t) represent the N dimensional vector of random
variables at time t withXi(t) as its i− th component. LetX(t) rep-
resent the set of past random variables inX i.e.,X(t) = {X(t−j) :
j = 1, 2, . . .∞}. Let P (A|B) represent the optimal unbiased least-
square predictor of the random variable A using only the random
variables in the set B. Thus P (Xi(t)|Xi(t)) represent the optimal
unbiased least-square predictor of Xi(t) using only the past values
of Xi(t). Let σ2(A|B) be the variance of A− P (A|B).

The processXj is said to have a causal influence on the process
Xi in the context of processes X, if

σ2(Xi(t)|X(t)) < σ2(Xi(t)|X(t)\Xj(t))

In general, it is extremely difficult to determine Granger causal-
ity (in its purest form) because computing optimal unbiased least-
square predictor for arbitrary stochastic processes is a non-trivial
task. In practice, Granger causality has been applied in the context
of linear models.

2.1. The Linear Simplification

In the linear simplification, the multivariate stochastic process X
(represented as a N dimensional row vector) is modeled as a lin-
ear combination of its past values and independent, identically dis-
tributed (iid) noise. Such representation is also called a multivariate
autoregressive model. Formally

X(t) =
k∑

τ=1

X(t− τ )A(τ ) + E(t) (1)
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where k is called the model order, A(τ )τ=1...k are the model pa-
rameters in the form of k matrices of size N ×N (with coefficients
aij(t)),E(t) is aN -dimensional row vector of noise with zero mean
and a covariance equal to R. For any t1 �= t2, E(t1) and E(t2) are
identically distributed and uncorrelated.

In this model, if aij(t) > 0 for some t, then past values of Xi

improve the predictability of Xj and therefore, Xi is said to have
causal influence on Xj . The parameter t is called the the causality
lag betweenXi andXj .

To infer the causal relationships in the linear simplification, we
need to know the model parameters {aij(t)}. These may be esti-
mated from a realization of the process X. Let {x(t)}t=1...T be a
realization of the stochastic process X and {e(t)}t=1...T be a real-
ization of the iid noise E. This realization must satisfy

x(t) = [x(t− 1) . . . x(t− k)]
[
A′(1) . . . A′(k)

]′
+ e(t) (2)

for all t ∈ [k + 1, . . . T ]. The above set of equations can be written
in a compact matrix form as follows. Let Y be a matrix of size
(T − k)×N , Z be a matrix of size (T − k)×Nk,W be a matrix
of size Nk × N and N be a matrix of size (T − k) × N obtained
by stacking the rows in (2) for t = T − k + 1 to t = T . Now, Eq. 2
may equivalently be written as

Y = ZW +N (3)

where Y and Z are derived from a realization x of the process X,
W = [A′(1) . . . A′(k)]′ contains all the model parameters (aij(t))
andN is derived from realization e of the noise E.

The maximum likelihood estimate (WMLE) of model parame-
ters is given by the standard least square solution of Eq. (3) i.e.,

WMLE = arg min
W

N∑
j=1

||Yj − ZWj ||
2
2 = (4)

arg min
aij(τ)

N,T∑
j=1,t=k+1

[
xj(t)−

k∑
τ=1

N∑
l=1

xl(t− τ )alj(τ )

]2

(5)

where Yj represents jth column of Y and Wj represents the jth

column ofW . Eq. (4) has a unique solution only if (3) is not under-
determined, i.e.,

(T − k)N ≥ N2K ⇒ T ≥ (N + 1)k

In general, for reliable estimates of the model parameters, Eq.
(3) must be sufficiently overdetermined, i.e., the number of observa-
tions of the process X must be significantly larger than the number
of model parameters ((T − k)N >> N2k).

If the model is sparse, i.e., the number of non-zero coefficients in
{aij(τ )} is significantly smaller than the total number of coefficients
(Nk), then it might be possible to find a reliable solution to (3) using
techniques of sparse regression.

2.2. Sparse Regression

Consider a multivariate linear regression model of the form Y =
ZW where Y is a known n1 × 1 response vector, Z is a known
n1×n2 regressor matrix andW is the unknown model vector of size
n2 × 1 to be determined using the response Y and regressor Z. The
usual techniques to solve this are ordinary least square regression
[11], ridge regression and subset selection. For these techniques, it

is usually required to have n1 >> n2. However, there is a growing
body of work indicating that ifW is sparse then it may be recovered
even if n2 > n1 using the lasso regression [9].

The lasso regression [9] solves the problem

min
W
||Y − ZW ||22 (6)

s.t.||W ||1 ≤ t (7)

where ||.||22 represents the square of L2 norm and ||.||1 represents the
L1 norm of the respective vectors. The parameter t is the regression
parameter usually chosen after cross-validation.

It can be verified that for any t, there exist a λ such that the
program (6, 7) is equivalent to the following optimization problem:

min
W
||Y − ZW ||22 + λ||W ||1 (8)

The programs (6, 7) and (8) can be solved efficiently using a
technique called least angle regression [3] in time no longer than
time required to carry out the ordinary least square computation.

The estimation of multivariate autoregressive coefficients in (3)
may be viewed as a regression problem where Y is the response vari-
able, Z is the matrix containing the regressors and W is the model
to be determined. In this case, the maximum likelihood estimate of
(4) becomes the least square solution to the regression problem. The
lasso formulation thus becomes

W sparse = arg min
W

N∑
j=1

[
||Yj − ZWj ||

2
2 + λ||Wj ||1

]
(9)

Note that the coefficients of Wj only appear in the jth term of
the above sum. So, this problem may be decomposed into N inde-
pendent lasso regression problems of size (T − k)×Nk as follows

W sparse
j = arg min

Wj

||Yj − ZWj ||
2
2 + λ||Wj ||1

The goodness of fit of the regression is captured using the
notion of predictability (pj), which is defined as pj = 1 −
Q

∑T

t=k+1[xj(t) −
∑k,N

τ=1,l=1 xl(t − τ )alj(τ )]2 where Q =

[
∑T

t=k+1(xj(t))
2]−1 It may be verified using the properties of

the lasso regression that the predictability varies from 0 to 1. If the
predictability of a voxel is 1 then its time course can be predicted
exactly using the past k values of other voxels. On the other hand, if
a voxel has zero predictability then its time course is orthogonal to
(independent of) the shifted time course of all the other voxels.

3. RESULTS AND DISCUSSION

3.1. Simulations

We carry out simulations of sparse multivariate autoregressive mod-
els (MAR) to generate its realizations. The parameters of the MAR
model and the size of its realization were chosen to reflect the sizes
of typical fMRI data sets.

We then use the lasso regression to estimate model parameters
(as discussed in Section 2.2). We compare the estimated parameters
with the actual parameters of the MAR model.

Let {aij(t)} be the parameters of the MAR model and {âij(t)}
be the model parameters estimated by the regression. Let S(α) =
{(i, j, t) : |aij(t)| > α} and Ŝ(α) = {(i, j, t) : |âij(t)| > α}. We
use the following metric for our evaluation:
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Fig. 1. Precision and recall as a function of λ

Precision. It is defined as the ratio of numbers of true non-zero
coefficients estimated to the total number of non-zero coefficients
estimated. Formally precision p = |S(0) ∩ Ŝ(0)|/|Ŝ(0)|.

Recall. It is defined as the ratio of the number of true non-zero
coefficients estimated to the total number of non-zero coefficients
present in the model. Formally recall r = |S(0) ∩ Ŝ(0)|/|S(0)|.

Thresholding. Generally, it is more important to discover the causal
relationships that are strong. This can be done by considering only
the coefficients that are above a given threshold. The precision and
recall may respectively be defined with respect to a threshold α as
p(α) = |S(α) ∩ Ŝ(α)|/|Ŝ(α)|, r(α) = |S(α) ∩ Ŝ(α)|/|S(α)|.

Correlations. We use two measures of Pearson correlations be-
tween estimated and actual model parameters. The first measure
ctrue measures the correlations between aij(t) and âij(t) over
the true non-zero coefficient estimates (i.e. over true positives
only). The second measure cnon−zero corresponds to the corre-
lations between actual and estimated parameters over true pos-
itives, false positives and false negatives. Formally, ctrue =<
aij(t), âij(t) >(i,j,t)∈S(0)∩Ŝ(0) and cnon−zero =< aij(t),
âij(t) >(i,j,t)∈S(0)∪Ŝ(0).

We generated k random sparse graphs with 10, 000 vertices and
50, 000 edges. Edges in these graphs were assigned random weights
normally distributed with zero mean and unit variance. A MAR(k)
model was constructed using these graph. The edge weights were
used to define the coefficients {aij(t)} of the MAR(k) model. A re-
alization of the MAR process was obtained using iid noise with zero
mean and identity covariance matrix. If the MAR process was not
convergent, weights were scaled down uniformly until the process
became convergent. We obtained 500 time points of the realization.
This realization was used to estimate the model parameters using the
lasso regression. We report results only for k = 1 in this paper.

3.2. Results

Figure 1 shows the precision and recall curves as a function of the
lasso regularization penalty λ (see (8)). As the penalty is increased,
the lasso regression estimates fewer non-zero coefficients. This
improves the precision (i.e., the coefficients estimated to be non-
zero are more likely to be non-zero) at the cost of recall (i.e., many
non-zero coefficients are estimated to be zero). Figure 2 shows
the precision-recall trade-off for different thresholds. It is evident
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Fig. 2. Precision-recall tradeoff

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Corelations c

true
 as a function of 1/λ

Inverse regularization penalty (1 / λ)

c tru
e

α = 0.000
α = 0.010
α = 0.050
α = 0.070

Fig. 3. Correlations (ctrue) as a function of λ

from these figures that as the threshold increases the precision and
recall improve. Thus, the regression consistently makes less error in
estimating larger MAR coefficients.

The precision and recall measures only indicate the accuracy in
estimating whether a coefficient is non-zero or not. These measures
do not convey any information about the accuracy in the values of the
MAR coefficients. The correlation measures indicate the accuracy
in estimating MAR coefficient values. Figure 3 shows the ctrue as
a function of regularization penalty λ for different thresholds. For
all thresholds, ctrue increases as λ is increased. This indicates that
higher regularization penalty (λ) results in fewer non-zero estimates,
but with better accuracy. This measure might be a bit misleading
because is only based on true positives and does not consider false
positives and false negatives. The measure cnon−zero considers all
of these and is plotted in Figure 4 as a function of λ. Note that with
a suitable choice of λ, the correlations can be made as high as 0.9.
This demonstrates that MAR coefficients (and hence the causality
relationships) may be inferred with reasonable degree of accuracy
using the lasso regression.

3.3. Analysis of fMRI Data

The Granger causality analysis gives k connectivity matrices A(τ )
and a map [1 . . . N ] → [0, 1] indicating the predictability of voxels
in brain using the past values of other voxels. Initial analysis of fMRI
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Fig. 4. Correlations (cnon−zero) as a function of λ

data points to the hypothesis that predictability is a good indicator of
brain activations.

It is very difficult to ascertain the “ground truth” relating to
brain activations by using non-invasive measures such as fMRI. The
most common approach to analyze fMRI data uses the general linear
model (GLM) [5] which identifies activations in brain regions as a
response to external stimuli represented in the form of a design ma-
trix. By definition, GLM leaves out activations that are not linearly
correlated with the design matrix. If the predictability is an indica-
tor of brain activity, the regions found active by GLM analysis must
have high predictability. Moreover, one may also find regions of
high predictability that are not found to be active by GLM analysis.
Our initial analysis suggests that this is indeed the case.

To formalize the above observation, we define a measure called
weighted coverage of a set S1 of voxels in space by another set S2.
First, the voxels in the two sets are clustered into groups of spatially
connected 3-d components (two voxels are said to be connected if
they share a common face, i.e. we are using 6-connectedness in three
dimensions). The weighted coverage of S1 using S2 is defined as
ratio of the weight of clusters of S1 that intersect with clusters of S2

to the total weight of clusters of S1. Clearly, the weighted coverage
ranges from 0 to 1. A weighted coverage of zero implies that S1 and
S2 have no voxels in common. Large coverage indicates that many
connected components of S1 intersect with connected components
in S2. A coverage of one implies that every connected component in
S1 intersects with a component in S2.

In order to select the voxels that form set S1 or S2, we select the
top p-percent of active voxels given by the predictability maps on
the finger-tapping data-set considered in [4]. We also use the vox-
els given by the GLM maps using the same top p-percent of active
voxels. We used p = 1.25 % to compute S1 and S2, and performed
3d connected component analysis on these voxels. The coverage of
GLM maps by the predictability maps has a mean of 82 % and stan-
dard deviation (across subjects and conditions) of 16%. On the other
hand the coverage of predictability maps by the GLM maps has a
mean of 41% and standard deviation of 30%. This confirms our
hypothesis that the predictability maps discover most of the active
regions found by the GLM analysis along with many other regions
that are not found by the GLM analysis.

3.4. Discussion

Our work represents a significant improvement over previous ap-
proaches based on causality and sparse regression; in particular, our
method can be scaled up by a factor of 100 over recent work by
Valdes-Sosa et al. [8], albeit with the use of massively parallel en-
vironments (analysis was implemented in one rack of IBM’s Blue-
Gene supercomputer). Our results imply that it is possible to study
the full extent of the internal structure of the brain’s dynamics - as
measured by fMRI - without analytic compromises. Applications of
the method to task and dysfunction related experimental conditions
are currently underway, and will be reported in coming publications.
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